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A horizontal density gradient may be steepened to form a front if the horizontal flow 
which it drives is convergent. This convergence may be caused by an initial 
nonlinearity in the density gradient (as described by Simpson & Linden 1989). A 
quadratic density profile is analysed to illustrate the mechanism, and it is shown how 
the flow and the density profile interact to intensify and concentrate the front near 
a horizontal boundary. Linear and curved density profiles in a container of finite 
length are also studied : the most favourable location for frontogenesis is found to be 
where the flow emerges into a region of significant curvature after passing through 
a maximum of the density gradient. 

1. Introduction 
Gravity currents are flows which are driven by hydrostatic pressure differences 

resulting from horizontal density variations in the fluid. They are frequently 
observed to have a frontal structure (Simpson 1982) ; this is not surprising in cases 
where the initial density is a step function of the horizontal coordinate, as in lock- 
exchange experiments or dense gas releases. However, the formation of a front is 
often observed in situations where the initial horizontal density variation is 
continuous (Linden & Simpson 1986, hereafter referred to as LS) : examples include 
salinity fronts in estuaries and sea-breeze fronts. 

The mechanism for this frontogenesis was elucidated by Simpson & Linden (1989, 
hereafter referred to as SL). Fundamental to SL’s theory is their equation (3.10) for 
the evolution of the horizontal density gradient : 

(derived by differentiating the incompressible density equation 
Dp/Dt = 0 

with respect to x and ignoring vertical motion). The mechanisms described by (1.1) 
become clearer if it is expanded: 

The term -ua2p/ax2 represents the advection of fluid with a different density 
gradient past a stationary observer, and does not therefore imply any change to the 
density gradient in the$uid. (Throughout this paper, the term ‘density gradient ’ will 
refer to horizontal density gradients; a vertical density gradient will be denoted by 
the term ‘stratification ’.) The term - (au/ax) (applax) represents the steepening or 
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FIGURE 1. Horizontal density variation responsible for the formation and propagation of a sea- 
breeze front. 

flattening of the density gradient as neighbouring isopycnals moving with different 
horizontal velocities are bunched together or pushed apart. I n  particular, where the 
horizontal flow is convergent (au/ax c 0) the gradient will steepen, possibly to the 
extent of forming a front. Note that the terms ‘convergent ’ and ‘divergent ’ will be 
used in this paper to refer only to the horizontal component of flow, i.e. to denote 
non-zero auldx; we take V - u  = 0 throughout. The association between horizontal 
convergence and frontogenesis is well-known in meteorology (Hoskins 1982). 
Convergence of the horizontal flow occurs where the strength of the gravity current 
varies with the horizontal coordinate. Such a non-uniformity of the flow may result 
from a non-uniformity of the initial density gradient which is responsible for the 
flow: SL deduced that a front will form where the flow is from a region of strong 
density gradient to a region of weaker gradient, and will then propagate with the 
flow, as in a sea breeze (figure 1) .  

Gravity currents may be described in terms of baroclinic generation of vorticity, 

Here we have assumed two-dimensional, inviscid, Boussinesq flow ; p is a reference 
density. In all geophysical flows and in the experiments carried out by LS and SL, 
horizontal lengthscales are much greater than the vertical extent of the flow ; hence 

au 
aZ w x - .  

Differentiating (1.3) with respect to x and using (1.4), 

The expected location for frontogenesis is where the convergence (negative &/ax) is 
greatest ; the vertical derivative on the left-hand side of (1.5) suggests that  this will 
be at the lower boundary if the curvature of the density profile (azp/ax2) is positive, 
and at  the upper boundary if azp/ax2 is negative. This prediction is consistent with 
SL’s ideas on the location of frontogenesis; it is confirmed by their experimental 
results with a piecewise-linear initial density profile (i.e. with a2p/i3x2 a delta-function 
of x) and by observations of frontogenesis in sea breezes (see figure 1). 
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The aim of the present work is to investigate further the process by which 
curvature of the density profile leads to steepening of the density gradient. We shall 
consider in $3  the case of a quadratic profile (i.e. with a2p/ax2 uniform), which may 
be motivated physically by the existence of the density maximum at 4 "C in fresh 
water; thus a linear temperature profile around 4 "C would give the required 
quadratic density profile. SL have noted that vertical flow is associated with 
curvature in the density profile (since continuity necessitates that a convergent 
horizontal flow must be accompanied by some vertical motion) ; we shall see that 
uniform a2p/ax2 induces a vertical flow which is also uniform (with respect to the 
horizontal coordinate). Hence (1.4) becomes an exact equation, and the resulting 
algebraic simplifications will facilitate a deeper analysis of the frontogenesis process 
than SL were able to undertake. The relevance of the results to the dynamics of the 
thermal bar (the front which is observed around the 4 "C isotherm in lakes) will be 
considered. 

The analysis for a uniformly curved density profile will assume the flow to be of 
infinite horizontal extent ; similarly, SL ignored the effect of endwalls when analysing 
linear and piecewise-linear profiles. However, LS ascribed the frontogenesis in their 
experiments to the curvature which must exist somewhere in the density profile in 
order to satisfy the diffusive zero-flux boundary condition (on salinity, to which 
density is linearly related) a t  the endwalls. We shall therefore investigate the 
formation of fronts in a fluid contained in a tank of finite length with initial density 
profiles similar to those observed by LS (see figure 13 below and LS's figure 9). The 
case where there is an initial stable stratification as well as a horizontal density 
gradient will also be analysed : the initial conditions in SL's experiments included a 
stratification K times stronger than the horizontal density gradient (whereas the fluid 
in LS's tank was vertically well-mixed when frontogenesis was initiated). 

2. Mathematical formulation 
To study the dynamics of a gravity current, we need to simultaneously consider 

the evolution of the density field and the flow. Ignoring diffusion, the density 
equation in two-dimensional flow is 

the vorticity equation (1.3) may be expanded as 

and the flow velocity components are 

The stream function is obtained by solving 

with $ = 0 on rigid boundaries. The density of a fluid particle has been assumed to 
be a function only of temperature or salinity, but the equation of state is immaterial 
until diffusion is taken into consideration. 
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When heat (or salt) is allowed to  diffuse, we must replace (2.1) with an 
advection-diffusion equation, 

where K is an isotropic diffusivity and T can be either temperature or salinity. If the 
equation of state is linear, the density equation takes the same form as (2.5), but in 
other cases it is more convenient to stay with T as the ‘fluid state’ variable. For 
consistency, diffusion of vorticity (i.e. viscous effects) must also be accounted for, by 
the addition of a term 

(where v is the kinematic viscosity) to the right-hand side of the vorticity equation 
(2.2). The last term in (2.2) can be written as 

(where applaT is known from the equation of state) when T is used as the fluid state 
variable. 

Since we shall be considering flows accelerating rapidly from rest, the dominant 
dynamical balance will be between inertia and buoyancy forces ; thus the analysis in 
$3 (for a uniformly curved density profile) will use (2.1)-(2.4), and the effects of 
diffusion will only be mentioned briefly. When considering gravity currents in a tank 
of finite length (in $4) we will suppose that diffusion plays a role in setting up  an 
initial density profile, but the subsequent evolution of the flow will again be modelled 
without diffusive effects. 

We use SL’s method of solution, in which the field variables are expanded as power 
series in time t ,  

(2.7) w = w 0 + w , t + w 2 t 2 +  ... , 
p = po+p1t+p2t2+ ... , etc. 

These expansions are substituted into the evolution equations, and it is straight- 
forward to extract the density and vorticity perturbations a t  each order in t 
(although from (2.1), (2.2) and the initial condition of fluid at rest, it can be shown 
that only even-order perturbations to  the density field and odd-order perturbations 
to the flow will be non-zero) ; the only difficulties that may arise are in the solution 
of (2.4) at  each order. This method can yield useful information on how and where 
frontogenesis starts in gravity currents; to trace the full development of a front 
requires a numerical solution of the evolution equations, which has so far been done 
only for the case of a uniformly curved density profile. Furthermore, the method of 
expansion in powers o f t  can only describe developments in situ; it cannot trace the 
propagation of a front through the fluid ; nor would it admit the satisfaction of the 
boundary conditions on T or p if diffusive effects were included. 

1 

3. Quadratic density profile 

We consider the development of the flow generated by an initial density profile 

3.1. Solution by expansion in powers of t 

Po = p-yx2> (3.1) 
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FIQURE 2. O(t)  flow driven by a quadratic density profile, with profiles for horizontal velocity 
shown schematically. 

where y depends on the equation of state and the initial temperature profile. For an 
initially stationary fluid, (2 .2)  yields at  O(1) in t 

We now seek velocity components for the flow in a region of infinite horizontal extent 
and with rigid boundaries at z = fib, such that the vorticity is given by (3 .2)  and the 
vertical velocity is independent of x (as suggested in 0 1 above). Thus 

= -* with uldz = constant, 
a Z  P -#h 

and symmetry (about x = 0) indicates that the constant is zero; hence 

%YXZ 
P u1= --* 

Continuity then yields 

(3 .3)  

(Note that the velocity components are u1 t and w1 t ; u1 and w1 are components of the 
initial acceleration.) The horizontal flow is converging towards the density maximum 
in the upper half of the cavity, and diverging away from it in the lower half; there 
is a downward flow everywhere to compensate for this, as shown schematically in 
figure 2.  The inviscid flow would be unaffected by a wall at  x = 0 ;  because of the 
symmetry about this plane, streamlines for this flow have been plotted only for 
x > 0 : they are the dashed lines in figure 3. Note that ‘ convergence ’ in the sense of 
negative au/ax shows up as streamlines which diverge along the flow direction. 

The pattern of convergence and divergence leads us to expect the density gradient 
to steepen in z > 0 and to flatten in z < 0. Expanding the density equation (2 .1)  in 
powers of t ,  we obtain 

(If there was an initial uniform stratification i3po/az = -/3 as in SL’s calculations, this 
would have no effect on the dynamics ; for with w independent of x ,  the extra term 
-wap,/az in (3.5) would be independent of x and would have no effect on the flow 
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FIQURE 3. Streamlines at  time t = 0.7 (p//gyh)i in the region 0 < z < h, for flow driven by a 
quadratic density profile : ------, O(t )  flow only ; -, O(t)  flow plus O(t3)  perturbation. 

which is driven by density gradients.) Equation (3.5) shows that, as in any gravity 
current, the flow is becoming stably stratified (ap2/az < 0 everywhere) ; also, the 
perturbation to the horizontal density gradient is as expected, since 

( g ;  1 - aP0 aP2 2 = -+-t +...= -2yx 1 + y t 2 +  ... , ax ax ax 

i.e. an increase in magnitude with t for z > 0, and a decrease for z .c 0. This is 
illustrated in figure 4, in which isopycnals are plotted at times t = 0 and 
t = 0.7 Lp/(gh)i, where L, = (p / y ) i  is the lengthscale for horizontal density variations. 

According to (3.6) the timescale for frontogenesis is 

which differs by a factor of order (L,/h)i from SL’s estimate. The expansion in powers 
oft can only be expected to give accurate results at times t 5 tp. Furthermore, in any 
practical application, the horizontal extent of the region in which the density profile 
is quadratic will be finite; we could expect its length L, to be in the range 
h -4 Lq 4 L,. Thus end effects will become important on a timescale 

tq - W , / U J i  

(since u1 is the acceleration at t = 0 ) ,  so from (3.3) with x - L,, 

t, - (sy = tp. 
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FIQURE 4. Isopycnals in the region 0 < z < h a t  t = 0 (dashed lines) and t = 0.7 (p//gyh)f (solid 
lines): density calculated as p = po+p2t2, using (3.1) and (3.5). 
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FIQURE 5. Effect of O(ta) flow perturbation on horizontal velocity profiles and vertical flow in 
2 > 0. Dotted lines represent flow at O(t ) ,  solid lines include O(ta) flow. 

The O(t2) perturbation to the density profile will in turn perturb the flow. The 
vorticity equation at O(t2)  gives 

and we can find components of the velocity perturbation as before: 

us = (gr/p)2 x()h2 - $22 ), (3-9) 
W, = ) (gr /p)2  2 ( k 2  - I t 2 ) .  (3.10) 

The O(t3) changes to the horizontal velocity profile are illustrated schematically in 
figure 5,  and more precisely by plotting streamlines of t +  $3 t3 a t  t = 0.7Lp/(gh); 
as solid lines in figure 3 (for comparison with the O(t) flow). From these diagrams and 
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FIQURE 6. Effect of O(t4) density perturbation. Isopycnals at t = 0.7(p/gyh)f: density calculated 

as p = po+p2t2+p4t4 (solid lines), and without O(t4) term (dashed lines). 

(3.9), i t  can be seen that the shear lau/azI and the convergence (-au/ax) of the 
horizontal flow are both increased near the upper boundary; these are expected 
features of the process of frontogenesis. The symmetry about the horizontal 
midplane has been broken ; the positive feedback mechanism by which the 
convergence and shear of the O(t)  flow alters the density profile so as to intensify 
convergence and shear a t  O(t3)  also concentrates these flow properties in a thinner 
layer near one boundary. This can again be seen if we calculate the O(t4) density 
perturbation, 

p4 = - (g2y2~2/36p) (78.2 +5h2) ,  (3.11) 

which indicates that  both the horizontal density gradient and the stable stratification 
undergo their greatest increase near the upper boundary ; this is illustrated in figure 
6, which shows the effect of the O(t4) term (3.11) on the isopycnals a t  t = O.7LP/(gh)f. 

3.2. Numerical solution of the evolution equations? 
Prom (3.5) and (3.11) i t  is apparent that an initially quadratic density profile remains 
quadratic at all times ; the density gradient steepens near the upper boundary, but 
no horizontal station is preferred above any other as a location for a front. (In 
practice, one might expect the exact location for frontogenesis to  depend on end 
effects or any slight departures from the initial quadratic profile.) Similarly, the 
velocity components and the vorticity appear to  retain the same form of x- 

t Calculations similar to those described in this section, and with similar results, have been done 
independently by Jacqmin (1991). He has also obtained interesting results from numerical 
integration of equations equivalent to (3.20) and (3.23). 
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dependence at  all times (compare (3.2)-(3.4) with (3.8)-(3.10)). We therefore seek to 
extract this constant x-dependence, defining a new set of field variables 
(p*,  w * ,  u*, w*) which are functions only of z and t : 

(3.12) 

w = -xu* (2, t ) ,  (3.13) 

u = -xu*@, t ) ,  (3.14) 

w = w*(z,t). (3.15) 

Dimensionless variables may be defined using the timescale (3.7) and the first-order 
flow (3.2)-(3.4) to suggest scalings: 

P-P=-lx2 - * 
2 P ( z , t ) ,  

In terms of these variables, the continuity equation and the definition of vorticity 
become 

The density and vorticity evolution equations (2.1) and (2.2) take the forms 

aR aB --+ W- = 2UR, a7 ag 

asz asz 
a7 ag --+ W- = USZ+R; 

(3.16) 

(3.17) 

(3.18) 

thus they constitute a first-order quasi-linear system with a solution in terms of 
characteristics : 

(3.19) 

The initial conditions for this solution are 

Q = O  and R = 2  at T = O .  

Numerical integration along characteristics has been done according to a method 
described by Smith (1985) ; at each iteration at each time-step the value of D was 
interpolated between the characteristics with a Chebyshev polynomial so that 
integrations could be performed to evaluate U and W (as required by (3.16)). 21 
characteristics were used, starting at g = gt) (i = 1,  ... ,21) at T = 0, with 

-0.5 = c) < ... < [$21) = 0.5; 

the spacing of the cf) was closest near the upper boundary where frontogenesis is 
expected to occur. These characteristics are plotted in figure 7, from which it is clear 
that the system approaches some kind of singularity at  7 x 1.61. 

The quantities U,  W and R (proportional to the horizontal flow convergence, the 
vertical velocity, and the density profile curvature, respectively) are plotted in 
figures 8, 9 and 10 against the vertical coordinate 5 at dimensionless times 7 = 0.5, 
1.0,1.2 and 1.3. (Similar curves, not shown here, have also been plotted using results 
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FIGURE 8. Vertical profiles of U at dimensionless times T = 0.5, 1.0, 1.2, 1.3. 

obtained from the expansion in powers o f t  up to O(t4): the two sets of curves are 
barely distinguishable a t  7 = 0.5, but there are significant differences a t  r = 1.0.) 
Figure 8 shows the horizontal flow to be sheared almost uniformly at 7 = 0.5 (cf. 
figure 2 ,  showing the O(t)  horizontal flow), whereas at later times the shear becomes 
intensified increasingly rapidly near the upper boundary (cf. figure 5 ,  the horizontal 
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FIQURE 9. Vertical profiles of W at dimensionless times 7 = 0.5, 1.0, 1.2, 1.3. 

flow to O(t3)) .  The intensification of the vertical flow is shown in figure 9, in which the 
maximum of W (which corresponds to the zero of U) is seen to move upwards with 
time; at 7 = 1.60 (as close to the singularity as it has been possible to calculate), the 
position of this maximum reaches 5 = 0.25. The approach to a singularity in finite 
time is seen most dramatically in figure 10, which shows how the steepening of 
density gradients near the upper boundary rapidly accelerates after 7 = 1.0, while 
the gradient slackens in the lower part of the flow. Nearer the time of singularity, the 
value of R at 5 = 0.5 increases to 1000 at 7 = 1.58, 2300 at T = 1.59 and 8600 at 
7 = 1.60. 

The finite-time blow-up (R --f co at 5 = 0.5 a t  7 z 1.61) indicates that a front will 
form on the upper boundary when there is a negatively curved density profile 
(C12p/Clx2 < 0) ,  and that the estimate (3.7) of the timescale for frontogenesis is correct. 
These observations should remain true despite the unrealistic features of the model, 
viz. the horizontally infinite extent of the region of uniform curvature and the 
neglect of diffusive effects. We shall discuss first how diffusion can be included in the 
present model, and then compare the results obtained above with observations of 
fronts brought about by the presence of the 4 "C density maximum of water in lakes 
and laboratory tanks (i.e. in finite regions). 

In the non-diffusive model w cc x, so that horizontal diffusion of vorticity (v a2w/ax2 
in (2.6)) has no effect. Thus the introduction of viscous effects into (3.18) does not 
alter the important feature that each field variable retains its particular form of x- 
dependence at all times. The only modification required is the inclusion of a term 
describing vertical diffusion of vorticity, so that (3.18) becomes 

(3.20) 

18 FLM 235 
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FIGURE 10. Vertical profiles of R at dimensionless times 7 = 0.5, 1.0, 1.2, 1.3. 

here, the Grashof number is defined as 

Equation (3.20) could be integrated numerically (together with a temperature or 
density equation, derived below) using standard mthods applicable to parabolic 
equations if zero-stress boundary conditions were assumed, i.e. 

Q = O  at [=+O.5;  

at  each time-step an integration of Q twice with respect to 6 would yield U and W ,  
as was done in the non-diffusive case. The adoption of no-slip boundary conditions 

U =  0 at  [ =  kO.5 

would be likely to pose greater difficulties. 
Care needs to  be taken in introducing diffusion to the density equation: in the 

context of a nonlinear vertical density profile, Matthews (1988) has pointed out that 
if the nonlinearity derives from the temperaturc (or salinity) profile there may be 
different dynamical consequences to the case where the nonlinearity is in the 
equation of state. The present study has been motivated by the latter case, with an 
equation of state 

p-p  = -a(T-T)z ,  (3.21) 

where T = 4 "C. Ignoring diffusion, it has been shown that the density profile remains 
quadratic a t  all times ; hence the temperature profile remains linear, and horizontal 
diffusion of heat can have no effect on it. By analogy with (3.12), we therefore 
introduce T*(z, t )  by 

T-!P = xT*, (3.22) 
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and then define the dimensionless temperature gradient 0 by 

T* 
@=-- ,  r 

541 

where r is the temperature gradient at  time t = 0 (so that y = U P ) .  Instead of a 
density equation, we use the temperature equation (2,5), which in dimensionless form 
becomes 

(3.23) 

where the Prandtl number is the ratio of diffusivities of vorticity and heat, 

Pr = V / K ;  

we may also substitute R = 2 0 2  in (3.20). 
Alternatively, one could conceive of the quadratic density profile (3.1) being set up 

around a spatial maximum of salinity or minimum of temperature (away from 4 "C 
if in water, so that the equation of state is assumed linear). However, a quadratic 
temperature profile implies that a2T/ax2 is independent of x, so although horizontal 
diffusion may affect the temperature, it will do so uniformly ; the flow, which depends 
on horizontal temperature gradients, will be unaffected. Thus instead of (3.12) we 
write 

p - p  = -+Yp*(Z, t)+&, t ) ) ,  (3.24) 

where f i  accounts for the effect of horizontal diffusion of heat. Substitutions of (3.24), 
together with (3.13)-(3.15), into the vorticity and density equations (including 
diffusive terms) yields a set of three evolution equations (for w*, p* and b). However, 
f i  does not appear in the equations for w* or p*, indicating that horizontal diffusion 
again plays no part in the dynamics of frontogenesis. 

The experiments of SL suggest that the sort of rapidly accelerating flow which we 
are considering is essentially inviscid, with any diffusive effects being confined to thin 
boundary layers on the upper and lower surfaces. Furthermore, (3.20) and (3.23) 
suggest that the thickness of such boundary layers will only grow to O(Gr-a) (as a 
proportion of the total depth of fluid) within the timescale for frontogenesis 
(7 = O(1)); Gr is expected to be large because of the generally small values of 
diffusivities. Since horizontal diffusion has been shown to have zero influence and 
vertical diffusion negligible influence on frontogenesis with a quadratic density 
profile, it is therefore not worthwhile to  pursue the solution of (3.20) and (3.23). 

3.3. Applications to cabbeling in lakes 
Cabbeling, i.e. the mixing of two water masses to form a mixture denser than either 
original body (Foster 1972), is well known from lakes in cold climates where the 
temperature range spans 4 "C during the spring warming period. The model 
described above is not directly applicable to such flows: the initial condition of a 
stationary body of fluid is unlikely ever to occur, and more importantly the 
idealization of a quadratic density profile of effectively infinite horizontal extent, and 
the consequent elimination of any role for horizontal Fickian mixing, is unrealistic. 
In reality, diffusive processes will allow a steady state to be reached, and it is this 
steady state which is observed in lakes with temperatures ranging either side of 4 "C. 
Nevertheless, the idealized flow analysed above does have certain features in 
common with those observed in such lakes and in laboratory experiments on flows 
in water near 4 "C. 

18-2 
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STATION 

FIQURE 11 .  Isotherms on a cross-section of Kamloops Lake near the Thompson River inflow on 
25 April 1975 (from Carmack 1979). 

During the Spring warming period, the shallower parts of a lake will warm up 
faster than the deeper regions, so that there will be a period during which the deeper 
water will be cooler than 4 "C while the shallower water is warmer than 4 "C. This 
situation has been studied in particular in the Great Lakes of North America (e.g. 
Elliott 1971 ; Hubbard & Spain 1973) ; although the 4 "C isotherm gradually migrates 
from the shore to the centre of the lake, this is on a slow timescale compared to that 
of frontogenesis. Alternatively, a river which has warmed above 4 "C may flow into 
a lake still below 4 "C (Carmack 1979). I n  either case, the phenomenon known as a 
thermal bar occurs: this is a front, centred a t  the 4 "C isotherm and oriented 
vertically, across which there is a rapid variation of temperature from, say, 3 "C to  
5 "C. Although this front is very sharp at the surface, the horizontal temperature 
gradient rapidly decreases as one descends below about half-depth; a t  the lake bed, 
there is a broad region where the temperature of the water is approximately uniform 
at  4 "C. The structure is clear in figure 11 (taken from Carmack 1979), which shows 
isotherms in Kamloops Lake (the bulk of which is a t  3 "C) near the inflow of the 
Thompson River (at 6.4"C), although there are complications due to the bed 
topography. A similar isotherm plot was obtained by Ivey & Hamblin (1989) in 
laboratory experiments in which a tank of water had one endwall cooled to 0 "C and 
the opposite wall heated to 8 "C. 

The thermal bar therefore displays features in common with our idealized flow, 
namely frontogenesis in the upper part of the body of water and slackening of 
gradients in the lower part. Although the extent of the quadratic density profile is 
confined to the frontal region in a thermal bar situation (so that the descending flow 
is also concentrated there, rather than being uniform in the horizontal coordinate), 
the horizontal flow is similar to that predicted in our model, even at some distance 
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FIQURE 12. Profiles of horizontal velocity (interpolated from measurements plotted by Ivey & 
Hamblin 1989) at a horizontal station between a thermal bar and a heated (8 "C) wall. Velocities 
are positive in the direction from the thermal bar towards the wall. 

from the front. Figure 12 shows profiles of horizontal velocity measured by Ivey & 
Hamblin (1989) about halfway between the thermal bar and the 8 "C endwall, a t  two 
values of Rayleigh number Ra = gAph3/pvK (where Ap is the density difference 
between water at 4 "C and a t  8 "C). At the lower Ra, the profile is symmetric, with 
uniform shear (except in the boundary layers on the upper and lower surfaces), as in 
the O(t)  flow in our model (figure 2) ; at the higher Ra, the flow is more like our O(t3) 
flow (if one ignores the boundary layers and the weak counterflows at mid-depth) : 
there is a thin region of strong flow towards the 4 "C isotherm near the upper surface, 
and a broader region of weaker flow in the opposite direction below. Our model of 
course takes Ra = 00, but the development of that flow in time can be considered 
analogous to the effect of increasing Ra in the steady-state laboratory flow. 

The thermal bar differs from a gravity-current front in that, because of the 
symmetry of the density profile, it  does not propagate through the fluid. Even when 
the symmetry is broken, so that a propagating front might be expected to form, 
Carmack's (1979) results show that the thermal bar is dominant. The density 
difference between Kamloops Lake water a t  3 "C and Thompson River water a t  
6.4 "C is several times greater than that between the lake water and mixed water a t  
4 "C ; one might therefore expect to see a gravity current as in a look-exchange flow, 
with river water moving lakeward above the denser lake water, but there is no sign 
in figure 11 of either water body penetrating beyond the thermal bar. Various factors 
may contribute to this : efficient turbulent mixing a t  the interface would favour the 
thermal bar rather than a gravity current ; the rather steep bed topography of the 
lake would impede the motion of lake water towards the river mouth (and probably 
also plays an important role in creating the second front in the 5-6 "C range). 
Furthermore, if the gravity current did start to develop, thereby tilting isopycnals 
to the horizontal, any mixing to produce 4 "C water at the interface would render the 
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water column below the interface statically unstable. The resultant overturning in 
this lower layer would result in i t  becoming well-mixed a t  4 ° C  (Foster 1972), so 
forming a thermal bar. The arrest of a gravity current and its replacement by a 
thermal bar have been observed experimentally by Marmoush, Smith & Hamblin 
(1984). 

4. Linear density gradient near an endwall 
In  LS’s experiments, the effect of turbulent stirring on a lock-exchange gravity 

current was to produce a region in the centre of the tank where the fluid was 
vertically well mixed and had an approximately linear horizontal density variation 
(figure 13, dashed line; see also LS’s figure 9). As time progressed, this region spread 
out until the density profile was linear along the entire length of the tank, except near 
the endwalls where i t  levelled out to satisfy the zero-flux boundary condition 
+/ax = 0;  this is shown as the solid line in figure 13. Both profiles in figure 13 include 
curved regions which may be the cause of the frontogenesis observed by LS when the 
turbulent stirring was switched off; we shall investigate this theoretically using the 
method of expansion in powers of time. 

First, however, i t  is of interest to study the gravity current which evolves from a 
density profile which is linear all the way to the endwalls, i.e. ignoring the zero-flux 
boundary condition. In  a horizontally unbounded region, a linear density gradient 
will produce an accelerating shear flow which will rotate all isopycnals a t  the same 
rate, i.e. with no tendency to frontogenesis (SL). However, if this flow is blocked by 
an endwall, the horizontal velocity must be convergent where it is towards the wall 
and divergent where it is away from the wall. Frontogenesis is associated with 
convergence, and so i t  appears that the blocking effect of an endwall may be 
sufficient for the formation of a front, with no requirement for diffusive effects to 
produce curvature in the density profile 

Consider an initially linear density profile with no stratification : 

po = P ( l + a x )  (4.1) 

(i.e. with a change of sign compared with SL’s definition of a). The fluid occupies a 
rectangular tank, 

but with L % h we calculate the flow as for a semi-infinite region x > 0, since the flow 
near the wall at x = 0 will not be significantly affected by the far endwall. (In the 
finite tank the centro-symmetry property allows conditions near x =  L to be 
immediately deduced from those near x = 0, as in Cormack, Leal & Imberger’s (1974) 
analysis: the points (x, z )  and (L-x ,  -2) have equal and opposite flow velocities and 
equal denisty gradients.) 

Substituting (2.7) and (4.1) into (2.2), the initial rate of vorticity generation is 

-?jh < z <?jh, 0 < x < L ,  

and solving (2.4) yields 
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FIGURE 13. Horizontal density profles used as initial conditions for ralculations simulating LS’s 
experiments : -, derived from the action of diffusion on an initially linear density profile with 
gradient ap (with region near left-hand endwall shown on a larger scale in right-hand plot) ; ----, 
derived from the action of Fickian shear dispersion on an initial step profile (step height Ap at 
x = 0.55). 

: / h  

FIGURE 14. Streamlines in region near left-hand endwall at  time t = @a)-: for flow driven by a 
linear density profile: ------, O(t) flow only; -, O(t)  flow plus O(tS) perturbation. 

The first two terms in the braces represent an unimpeded gravity current, and the 
Fourier series represents the blocking of this flow by the endwall, the effect of which 
is only felt within distances of order h from the wall. The dashed lines in figure 14 are 
streamlines plotted using (4.3) ; it is clear from this diagram (or from differentiation 
of (4.3)) that the horizontal flow towards the wall in z < 0 is convergent (au/ax < 0) 
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while the flow away from the wall in z > 0 is divergent. There is also a vertical flow 
component, due entirely to blocking of the horizontal flow by the wall; the maximum 
vertical velocity is at  the wall. When this upward flow meets the ceiling it will be 
turned back towards the centre of the tank, becoming the ‘disturbance produced by 
reflection at the end of the channel’ seen in SL’s experiments (though this cannot be 
verified analytically using the expansion in powers oft) .  

The first-order flow perturbs the density profile at  O(t2)  : 

(4.4) 
In this expression, -&a2pz represents the effects of an unimpeded gravity current : a 
uniform stable stratification with no change to horizontal density gradients. The 
effects of the endwall are a reduction in the stratification (because of the slowing 
down of the shear flow), while the horizontal gradient is steepened in z < 0 and 
flattened in z > 0. (In fact i3p2/ax is singular at the lower corner of the wall, but one 
should be circumspect about interpreting this as a front ; the density gradient varies 
strongly with z ,  and is in fact also singular at  the upper corner, but there the ‘front ’ 
faces the wrong way !) 

Isopycnals are plotted for times t = 0 and t = (ga)-i in figure 15, using 

P = P0+P2t2 

with (4.1) and (4.4); away from the wall, they are rotated uniformly, but nearer the 
wall the angle of rotation is reduced (indicating reduced stratification) and the 
spacing is changed (indicating steepening or flattening of the horizontal gradient). 
The S-shape is because the local angle of rotation depends on the local shear, and the 
distance from which the flow ‘sees ’ the endwall is shorter for fluid near the horizontal 
boundaries than for fluid near z = 0 (see figure 14). 

Although frontogenesis appears to be occurring in the lower part of the tank, the 
front would appear a t  the wall (where the density gradient undergoes the greatest 
steepening) with the flow behind it tending to hold it against the wall. Thus no front 
would be expected to propagate along the tank; this accords with SL’s observation 
that no front appeared when the initial density profile was linear. 

It is nevertheless of interest to calculate the flow at O(t3) .  Unlike wl, which is 
generated as a result of the initial linear density variation, the vorticity generation 
at  O(t3) is entirely due to endwall blocking: 

This represents an increase in vorticity production where the density gradient is 
steepened at  O(t2) and a decrease where it is flattened. The stream function at O(t3) 
is 

(2n+ 1) xx (2n+ 1) x z  
h }sin 

2n+ 1 

2nxz OD 

+h2 x Ansin-exp{ h -?}I, (4.6) 
n-1 

where 
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FIQURE 15. Isopycnals in region near left-hand endwall at times t = 0 (dashed lines) and t = (ga)-i 
(solid lines) for flow driven by a linear density profile. Density calculated aa p = po+pI t2 ,  ueing (4.1) 
and (4.4). 
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FIQURE 16. Streamlines in region near left-hand endwall for O(t3)  flow perturbation in flow 
driven by a linear density profile. 

The first Fourier series in (4.6) is the circulation resulting directly from the O(t2) 
density gradient changes, and the second series shows how this circulation is itself 
modified by the presence of the endwall. Streamlines for $3 are plotted in figure 16, 
which shows a circulation confined to a region of horizontal extent N h near the 
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FIQURE 17. Isopycnals in region near left-hand endwall for flow driven by a line,a.r density profile 
with initial stratification /3 = xu, a t  time t = 0 (dashed lines) and t = P(gu)-t (solid lines). 

endwall. This circulation perturbs the O ( t )  flow, and the resultant flow (represented 
by = $ l t + $ 3 t 3 )  is shown a t  time t = (ga)-i by the solid streamlines in figure 14. 
This shows similar features to figure 3 (but upside-down) : the flow towards the wall 
is stronger, and confined to a smaller portion of the height of the tank, than the flow 
away from the wall; the vertical velocity is also greater in the lower half of the tank. 

4.1. Eflects of initial stable stratification 
To simulate SL’s experiment with a linear density profile more precisely, it is 
necessary to take account of the initial stable stratification. SL’s initial condition on 
the density was 

with Pla = x ,  and we shall calculate the subsequent flow and density perturbations 
as before. 

The flow at O(t)  is unaffected by P,  and is still given by (4 .2 )  and (4.3). However, 
the O(t)  vertical flow advects dense fluid upwards, so that the O(tz)  density 
perturbation (4.4) is modified to 

po = p(l +ax-/3z) (4.7) 

in which the extra term involving /3 reduces the density gradient everywhere. The 
effects of this can be seen in figure 17, in which isopycnals (for p = po+pzt2)  are 
plotted a t  times t = 0 and t = 2(ga)-f with /3/a = x .  Only in a shallow layer a t  the 
base of the tank is the horizontal gradient steepened (whereas steepening occurred in 
the entire lower half of the tank with /3 = 0) ; elsewhere it is flattened or even reversed 
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(where the isopycnals are recurved upwards towards the endwall, a feature clearly 
visible in SL’s figure 5). This may be explained as follows : when vertical flow is taken 
into account, there are additional terms 

(4.9) 

on the right-hand side of equation (1.2) for the rate of change of density gradient. The 
second term in (4.9) (which acts at  O(t2) ,  whereas the first term only comes in at O(t4))  
shows that because the vertical velocity decreases with distance from the wall (see 
figure 14) dense fluid will be pushed upwards most rapidly at the low-density end of 
tank ; hence the horizontal density gradient will be reduced or even made negative. 

The reversal of the density gradient in a substantial region near the upper corner 
of the endwall implies a reversal in vorticity generation, suppressing the initial 
gravity-current flow near the wall. The dense fluid which is initially forced upwards 
when the gravity current is blocked by the endwall will tend to slump back down, 
presumably suppressing any subsequent reflected flow along the ceiling. One may 
speculate that if SL had conducted experiments with zero initial stratification they 
would have observed rather greater reflected disturbances than actually occurred. 

4.2. Effects of diffusion near a n  endwall 
In SL’s experiments an initially linear density gradient was obtained by setting up 
a linear salinity gradient (the equation of state being linear). However, the diffusive 
zero-flux boundary condition implies an initial discontinuity in the salinity and 
density gradients a t  the endwalls; hence diffusion must be important near the 
endwalls at small times, even if the diffusivity is very small. This implies that there 
is some timespan 0 < t < t,, before the gravity-driven motion becomes significant, 
during which diffusion is changing the density profile near the walls. After t = t,, 
diffusion has negligible effect on the rapidly accelerating gravity current. The density 
profile which obtains after a period ta of pure diffusion can therefore be taken as the 
initial condition for the subsequent non-diffusive development of a gravity current 
(i.e. we ignore any transition period between the diffusive and gravity-current 
phases). 

We may estimate the magnitude oft, as the time at which the gravity-driven flow 
(initially with acceleration ul, starting from rest) ‘overtakes ’ the diffusive smoothing 

(4.10) 
of the density profile: 

(i.e. defining S as the width of the region adjacent to the endwall within which 
diffusive effects are felt at  time t,). We therefore obtain accelerationAiffusion time- 
and lengthscales (cf. Kay 1990) 

ta = ( 1 6 ~ / ~ f ) f ,  (4.11) 

6 = (32~’ /u , ) f .  (4.12) 
From (4.3) we have 

u1 - gah; (4.13) 

thus with K - lo-’ m2 s-l (the molecular diffusivity for salt in water) and 
a - 

t, - lo-’ s, 6 - lo+ m. (4.14) 

These values are so small that we are justified in ignoring any diffusive effects on the 
density profile when analysing SL’s experiments ; certainly none were observed. On 

&,ti = B(Kt,)i = 6 

m-l, h - lo-’ m (as in SL’s experiments), we find 
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the other hand, LS created a linear density profile by the action of turbulence on a 
lock-exchange gravity current, so in this case i t  would be more appropriate to take 
K as the eddy diffusivity which LS found to be of order 3 x m2 s-'. The value of 
6 is then about 0.05 m, i.e. similar to the widths of the regions of curvature near the 
endwalls in the otherwise linear density profiles in LS's figure 9. 

During the purely diffusive phase 0 < t < t,, the density profile evolves from the 
initial condition (4.1) according to  

with endwall boundary conditions 

- ' p  = o a t  x = 0 ,x  = L. 
ax 

(4.15) 

(4.16) 

Solving (4.15), we find 

}. (4.17) 
1 (2n + 7t2Kt} cos (2n + 1) 7GX 

L 

(Solutions of (4.15) are not available in a convenient form for a semi-infinite tank as 
for the non-diffusive case ; when plotting isopycnals and streamlines from the 
formulae derived below, we shall use an aspect ratio h/L = 0.1, sufficient to prevent 
the far endwall having any noticeable influence on conditions in 0 < x < h.) The 
initial condition for the development of the gravity current is then obtained by 
substituting t = t 8  = P / ~ K  in (4.17) : 

l + + L - - C  4ccL a, 1 cos (2n+1)7tx}; L (4.18) 
79 n-o (2n+ 

henceforth S is treated as a constant. The value S = 0.OU (comparable to the widths 
of the regions of curvature in profiles measured a t  later times in LS's figure 9) was 
used in (4.18) to  plot the initial density profile shown as the solid line in figure 13. 

We can now proceed as in the non-diffusive case, using (4.18) to calculate the O ( t )  
vorticity from 

9 +Po 
P ax 

w 1 =  -- 

and then solving (2.4) for the stream function: 

(2n+ 1 )  7tz 

(2n+ 1 )  7th L .  

(4.19) 

cosh 

cosh 

4gaL2" 1 

2L 
$1 = 7 z 0  (2n+ 1 ) 3  

The solid lines in figure 18 are streamlines plotted using (4.19) with 6 = O.O4L,  with 
streamlines for the non-diffusive case shown dashed for comparison. 

Essentially, we can think of the effect of diffusion as giving the flow 'advanced 
warning ' of the endwall. The diffusively reduced density gradient in 0 < x S 6 causes 
the flow to already be slowed down before it feels the blocking effect of the endwall. 
Hence in figure 18, the horizontal velocity is everywhere less in the diffusive than the 
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FIGURE 18. Streamlines for O(t) flow near left-hand endwall : ------, initial density profile strictly 
linear; -, initial density profile as solid line in figure 13. 

non-diffusive case. However, the flow far from the endwall must be as for an 
unimpeded gravity current in both cases ; thus if diffusion reduces the intensity of 
convergence lau/ax( in 0 < x < 6, there must be an increased convergence somewhere 
else. The vertical velocity on z = 0 is w = -ph,z (aulaz) dz and hence provides an 
indication of the convergence in the lower half of the tank at a given horizontal 
station; the spacing of streamlines crossing z = 0 in figure 18 clearly indicates the 
vertical flow (and hence convergence) is reduced in 0 < x < 6 but increased in x > 6. 
Hence convergence, the cause of frontogenesis, is spread out over a greater horizontal 
distance by diffusion ; it is therefore possible that a front might form at some distance 
(of order 6) from the wall and then propagate towards the wall. 

This effect may be seen in the isopycnal plots (figure 19a, b)  in which (4.18) and 
(4.19) have been used to calculate the density perturbation 

pz = -&-. +Po 

ax 
(4.20) 

In  figure 19(a) the isopycnals are plotted at  the same times as in the non-diffusive 
case (figure 15), but to make the comparison clearer figure 19(b) shows isopleths of 
the perturbation pz only, for 6 = 0.04~5 and 6 = 0 (non-diffusive). Changes to the 
horizontal density gradient are most easily seen in figure 19(b)  by examining the 
intersections of perturbation isopycnals with the horizontal boundaries : without 
diffusion, the changes are concentrated near the endwall, whereas they are spread out 
more evenly over a region 0 < x 5 26 when diffusion is allowed to act. From figure 
19(a), the steepest density gradient at time t = (ga)-i is at the lower boundary at 
x !z 6 (rather than at the wall, where ap2/ax was singular in the non-diffusive case), 
so this is where frontogenesis might be expected to occur. (The singularity in the 
density gradient could also be removed from SL’s results with a piecewise-linear 
density profile if the initial profile was smoothed by diffusion.) 
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FIGURE ,l9. (a) Isopycnals in region near left-hand endwall at  times t = O  (dashed lines) and 
t = (gcz).: (solid lines) for flow driven by a density profile shown as solid line in figure 13. (b) O(t2) 
density perturbation for flow near an endwall : ------, initial density profile strictly linear; -, 
initial density profile as solid line in figure 13. 

Diffusion also has the effect of spreading out the region in which vertical 
stratification is reduced by the slowing down of the gravity current. In  the 
comparison between figures 15 and 19(a), this shows up in the reduction in the angle 
of rotation of isopycnals (at  any given horizontal station) in the diffusive case. Note 
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that the zero-flux condition is not satisfied at  the horizontal boundaries (where the 
isopycnals should be vertical), sincc thc modcl does not take account of diffusion 
after the gravity current is set into motion ; SL’s experiments show that boundary- 
layer effects are rapidly suppressed as the flow gathers momentum. 

4.3. Frontogenesis resulting from an initial density profile with significant curvature 
throughout 

The fronts which formed after the turbulence was switched off in LS’s experiments 
were already fairly well-defined at a distance of 0.6 m from the endwalls (LS, figure 
12), in contrast to the estimated value of 0.05m for the distance b at which 
frontogenesis is expected to take place according to the above analysis. Furthermore, 
the analysis predicts the frontogenesis to be weak, since figure 19(a) shows the 
maximum of density gradient at x x 6 to be rather shallow. It therefore appears that 
curvature of the density profile produced by diffusive effects near the endwalls may 
not be sufficient to explain the fronts observed by LS. However, the turbulence may 
have been switched off before the density profile had become linear over all but a S- 
region adjacent to each endwall (P. F. Linden, personal communication) ; there 
would then be significant curvature over the entire length of the tank (as in the 
density profiles measured at  earlier times in LS’s figure 9 ) ,  and frontogenesis may 
occur further from the walls. 

The density profiles measured by LS were the result of an interaction between the 
buoyancy-driven shear flow and the turbulent mixing, producing a shear-dispersion 
effect (Taylor 1953). If this effect can be represented by a Fickian dispersion 
coefficient (as assumed by LS), these profiles will be solutions at various times t of the 
diffusion equation (4.15) with the zero-flux boundary conditions (4.16)’ but evolving 
from an initial step profile 

The required solution is 

}. (4.22) 
4 OD ( -  1)” exp { (2n+ 1)2n2,vt} 

p = p+iAp{  1 -- x - 
nn-,2n+1 

(2n+ 1 )  RX 
L 

cos - 
L2 

If the turbulence is switched off at  a time t,, then the profile (4.22) which obtains a t  
t = t,  will be the initial condition for the subsequent development of the gravity 
current. Introducing the lengthscale h = 2 ( ~ t , ) i ,  this initial condition becomes 

which is plotted for h = 0.5L as the dashed profile in figure 13. 
The analysis of the development of the gravity current from this initial profile 

proceeds along the same lines as that for a linear profile altered by diffusion near the 
endwalls (following (4 .18)) .  The stream function a t  O(t) is 

(2n+ 1 )  RZ 
cosh 

cosh 
(2n+ 1)xh L ’  

2L 
(4.24) 

and the density perturbation pz is calculated from (4.20), using (4.24) and (4.23) to 
obtain u1 and apo/ax respectively. Isopycnals (for p = po +p2 t 2 )  are plotted in figure 
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FIGURE 20. Isopycnals at times t = 0 (dashed lines) and t = B(gAp/Lp)-f for flow driven by the 
initial density profile shown as dashed line in figure 13. Note that (unlike previous isopycnel plots) 
this shows the entire length of the tank, with a vertical scale exaggeration by a factor Llh. 

20, taking h = 0 . a ;  this plot is for time t = 3(gAp/Lp)-i because the changes to the 
density gradient are not very clearly visible a t  t = (gAp/Lp)-i - in reality the positive 
feedback effect would enhance the steepening of the gradient on the timescale 
(gAp/Lp)-i ,  whereas we have simply exaggerated the size of the perturbation pz, 
without altering its location, by plotting the O(t2)  density at a larger time. Figure 20 
shows the steepest density gradients to be on the upper and lower boundaries, in flow 
moving towards the endwalls a t  a distance of about 0.3L from the walls; this is the 
region where frontogenesis occurred in the experiment recorded in LS’s figure 12. 
Comparing with the initial density profile (figure 13),  frontogenesis is seen to occur 
where the flow is just entering a region of curvature, rather than where the curvature 
is greatest. The term 

au ap 
ax ax 
-- 

in (1.2) shows that the rate of steepening of the density gradient is proportional to 
convergence (resulting from curvature) and to the existing gradient. Thus the most 
favourable location for frontogenesis will in general be somewhere between a 
maximum of curvature and an inflexion point (maximum gradient but zero 
curvature) in the density profile. 

4.4. Comparison with other gravity-driven JIOWS in shallow cavities 
Our analysis has been intended to model flows which evolve too rapidly for diffusive 
transfer of heat, salt or momentum to play a significant role. Thus the temperature 
or salinity distribution is ‘frozen’ into the fluid and changes only as a result of 
variations in the advective velocity within the fluid. However, to model some 
geophysical situations it is more appropriate to consider slower flows in which 
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diffusion of heat or salt plays a primary role. Relevant examples are the flow in a 
shallow rectangular cavity with differentially heated endwalls (Cormack et al. 1974 ; 
Patterson & Imberger 1980) or with non-uniform internal heating (Patterson 1984). 

The thermal forcing specified by these authors ensures that the steady state will 
involve a circulation of fluid, whereas without heat input (as in our study), the fluid 
must eventually become stationary with horizontal isopycnals. However, even where 
the evolution of the flow from an initially stationary state is considered (by Patterson 
& Imberger 1980 and Patterson 1984), there are only limited similarities to our 
results. (The steepening of the temperature gradient near the endwalls found by 
Patterson is by a completely different mechanism to that of flow convergence 
described above.) In  fact, the greatest similarities to our results are in the steady- 
state analysis of Cormack et al. (1974), for two reasons. First, these authors showed 
that in the steady state the temperature varies linearly between the temperatures of 
the heated endwalls (to first order), so that the lowest-order forcing will be identical 
to the case of a linear density profile analysed above; secondly, they performed a 
perturbation expansion in the aspect ratio h/L,  which, like our expansion in time, 
decomposes the complicated interaction between flow and density profile into a series 
of stages. 

The most obvious similarity between Cormack et aZ.’s (1974) results and ours (with 
a linear profile) is the division of the cavity into a core region with a parallel shear 
flow and end regions (of width - h) in which the flow is turned round. Looking in 
more detail, the similarities between the stages in the two problems can be seen in 
Cormack et al.’s (1974) figure 4 (isopleths of t9;, comparable to pz in our figure 19b) 
and figure 5 (@;, comparable to $3 in our figure 16); however, the analogy suggests 
that their attribution of the skewness in the streamlines at  first order to  vertical 
stratification retarding downward flow may not be correct ; it is instead a result of the 
changes to the density gradient in the end regions wrought by the zero-order flow. 

5. Summary and conclusions 
A gravity current driven by a nonlinear horizontal density variation will develop 

a front by a mechanism first identified by SL and investigated further here. The non- 
uniform forcing of the flow implies that its horizontal component must be convergent 
in some region, and this convergence brings vertical isopycnals closer together. This 
steepening of the density gradient in turn drives the convergent flow more strongly, 
so there is a positive feedback which causes a singularity in density gradient (i.e. a 
front) to appear on a horizontal boundary of the fluid in finite time. Frontogenesis 
occurs near the upper boundary (and the density gradient is slackened near the lower 
boundary) if the density profile is negatively curved, and vice versa. 

Negative curvature is present in a body of fresh water with a temperature profile 
straddling the temperature of maximum density ; the ‘thermal bar ’ which appears in 
such cases is a front which is well-defined only in the upper half of the water body. 
The analysis with a uniformly curved density profile of infinite horizontal extent 
showed this general feature, but was unable to predict the horizontal station a t  which 
a front would form. A more realistic model was also analysed, in which the fluid was 
confined between endwalls with the density gradient reaching a maximum in the 
middle of the container and falling to zero a t  the walls: this study showed that 
frontogenesis would occur where the flow was just entering a region of significant 
curvature after passing through a maximum in the density gradient. Such a profile 
could be produced by the requirement to satisfy the diffusive zero-flux boundary 



556 A .  Kay 

condition at a wall in an otherwise linear density profile, but in this case the region 
of curvature near the wall would be rather narrow and i t  is doubtful whether a 
propagating front could appear. 

SL’s method of analysis, in which the field variables are expanded in powers of 
time, has the advantage that it represents the complex interaction between the flow 
and the density structure as a series of stages. Timescales for frontogenesis can be 
correctly deduced from this analysis, but to obtain details of the final approach to  the 
appearance of a front requires a numerical solution of the evolution equations. 

I wish to thank Dr P. F. Linden for his useful and encouraging comments on a 
previous draft of this paper; Dr P. C. Matthews also made useful comments on 
possible applications of my theoretical ideas. I am grateful to Dr E. C .  Carmack for 
permission to reproduce his diagram as figure 11. 
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